Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

OKIsItJustMe

(19,938 posts)
Thu Dec 1, 2016, 09:33 PM Dec 2016

Fuel from sewage is the future and it's closer than you think

(Please note, material from the Department of Energy's Pacific Northwest National Laboratory—Copyright concerns are nil.)

http://www.pnnl.gov/news/release.aspx?id=4317

[font face=Serif][font size=5]Fuel from sewage is the future – and it's closer than you think[/font]

[font size=4]Technology converts human waste into bio-based fuel[/font]

November 02, 2016

Susan Bauer, PNNL, (509) 372-6083
James Oyler, Genifuel Corporation, (801) 467-9976
Don Bradley, Metro Vancouver, (604) 788-2821
Carrie Capuco, WE&RF, (410) 353-2262

[font size=3]RICHLAND, Wash. – It may sound like science fiction, but wastewater treatment plants across the United States may one day turn ordinary sewage into biocrude oil, thanks to new research at the Department of Energy's Pacific Northwest National Laboratory.
[center]
[font size=1]Sludge from Metro Vancouver’s wastewater treatment plant has been dewatered prior to conversion to biocrude oil at Pacific Northwest National Laboratory.
Courtesy of WE&RF[/font][/center]

The technology, hydrothermal liquefaction, mimics the geological conditions the Earth uses to create crude oil, using high pressure and temperature to achieve in minutes something that takes Mother Nature millions of years. The resulting material is similar to petroleum pumped out of the ground, with a small amount of water and oxygen mixed in. This biocrude can then be refined using conventional petroleum refining operations.
[center]
[font size=1]Biocrude oil, produced from wastewater treatment plant sludge, looks and performs virtually like fossil petroleum.
Courtesy of WE&RF[/font][/center]

Wastewater treatment plants across the U.S. treat approximately 34 billion gallons of sewage every day. That amount could produce the equivalent of up to approximately 30 million barrels of oil per year. PNNL estimates that a single person could generate two to three gallons of biocrude per year.

Sewage, or more specifically sewage sludge, has long been viewed as a poor ingredient for producing biofuel because it's too wet. The approach being studied by PNNL eliminates the need for drying required in a majority of current thermal technologies which historically has made wastewater to fuel conversion too energy intensive and expensive. HTL may also be used to make fuel from other types of wet organic feedstock, such as agricultural waste.

[center]

[font size=1]What we flush can be converted into a biocrude oil with properties very similar to fossil fuels. PNNL researchers have worked out a process that does not require that sewage be dried before transforming it under heat and pressure to biocrude. Metro Vancouver in Canada hopes to build a demonstration plant.[/font][/center]


Using hydrothermal liquefaction, organic matter such as human waste can be broken down to simpler chemical compounds. The material is pressurized to 3,000 pounds per square inch — nearly one hundred times that of a car tire. Pressurized sludge then goes into a reactor system operating at about 660 degrees Fahrenheit. The heat and pressure cause the cells of the waste material to break down into different fractions — biocrude and an aqueous liquid phase.

"There is plenty of carbon in municipal waste water sludge and interestingly, there are also fats," said Corinne Drennan, who is responsible for bioenergy technologies research at PNNL. "The fats or lipids appear to facilitate the conversion of other materials in the wastewater such as toilet paper, keep the sludge moving through the reactor, and produce a very high quality biocrude that, when refined, yields fuels such as gasoline, diesel and jet fuels."

In addition to producing useful fuel, HTL could give local governments significant cost savings by virtually eliminating the need for sewage residuals processing, transport and disposal.

Simple and efficient

"The best thing about this process is how simple it is," said Drennan. "The reactor is literally a hot, pressurized tube. We've really accelerated hydrothermal conversion technology over the last six years to create a continuous, and scalable process which allows the use of wet wastes like sewage sludge."

An independent assessment for the Water Environment & Reuse Foundation calls HTL a highly disruptive technology that has potential for treating wastewater solids. WE&RF investigators noted the process has high carbon conversion efficiency with nearly 60 percent of available carbon in primary sludge becoming bio-crude. The report calls for further demonstration, which may soon be in the works.

Demonstration Facility in the Works

PNNL has licensed its HTL technology to Utah-based Genifuel Corporation, which is now working with Metro Vancouver, a partnership of 23 local authorities in British Columbia, Canada, to build a demonstration plant.

"Metro Vancouver hopes to be the first wastewater treatment utility in North America to host hydrothermal liquefaction at one of its treatment plants," said Darrell Mussatto, chair of Metro Vancouver's Utilities Committee. "The pilot project will cost between $8 to $9 million (Canadian) with Metro Vancouver providing nearly one-half of the cost directly and the remaining balance subject to external funding."

Once funding is in place, Metro Vancouver plans to move to the design phase in 2017, followed by equipment fabrication, with start-up occurring in 2018.

"If this emerging technology is a success, a future production facility could lead the way for Metro Vancouver's wastewater operation to meet its sustainability objectives of zero net energy, zero odours and zero residuals," Mussatto added.

Nothing left behind

In addition to the biocrude, the liquid phase can be treated with a catalyst to create other fuels and chemical products. A small amount of solid material is also generated, which contains important nutrients. For example, early efforts have demonstrated the ability to recover phosphorus, which can replace phosphorus ore used in fertilizer production.

Development of the HTL process was funded by DOE's Bioenergy Technologies Office.
[hr]The Water Environment & Reuse Foundation (WE&RF) is a 501c3 charitable corporation seeking to identify, support, and disseminate research that enhances the quality and reliability of water for natural systems and communities with an integrated approach to resource recovery and reuse; while facilitating interaction among practitioners, educators, researchers, decision makers, and the public.[hr]Metro Vancouver is a partnership of 21 municipalities, one Electoral Area and one Treaty First Nation that collaboratively plans for and delivers regional-scale services. Its core services are drinking water, wastewater treatment and solid waste management. Metro Vancouver also regulates air quality, plans for urban growth, manages a regional parks system and provides affordable housing. The regional district is governed by a Board of Directors of elected officials from each local authority.[/font][/font]

6 replies = new reply since forum marked as read
Highlight: NoneDon't highlight anything 5 newestHighlight 5 most recent replies
Fuel from sewage is the future and it's closer than you think (Original Post) OKIsItJustMe Dec 2016 OP
coming soon, for profit toilet prisons where people are force fed to produce.... nt msongs Dec 2016 #1
That would be inefficient OKIsItJustMe Dec 2016 #2
Something like this ... eppur_se_muova Dec 2016 #4
In that case, they should hook up the new White House directly to a refinery. Laffy Kat Dec 2016 #3
Human sewage ? Hell, livestock sewage ! eppur_se_muova Dec 2016 #5
The reformation of sewage sludge has been a topic of investigation for decades. It can never be... NNadir Dec 2016 #6

OKIsItJustMe

(19,938 posts)
2. That would be inefficient
Thu Dec 1, 2016, 10:08 PM
Dec 2016

If producing fuel is the goal, it would be better to simply process the food.

However, if you already have sewage you would like to do something with…

Laffy Kat

(16,376 posts)
3. In that case, they should hook up the new White House directly to a refinery.
Thu Dec 1, 2016, 11:41 PM
Dec 2016

Think of the energy Trump's administration could produce.

eppur_se_muova

(36,257 posts)
5. Human sewage ? Hell, livestock sewage !
Fri Dec 2, 2016, 03:14 PM
Dec 2016

Keep that sh*t out of the rivers and oceans. It all came from very recently fixed atmospheric CO2, let it go back to CO2, and turn a few wheels in the process. AR, IA, and DE could become biofuel powerhouses, along with NE and KS. If you're going to process chicken shit for the fuel, you should be able to recover a lot of nitrogen for fertilizer as a bonus.

NNadir

(33,512 posts)
6. The reformation of sewage sludge has been a topic of investigation for decades. It can never be...
Sun Dec 4, 2016, 11:54 AM
Dec 2016

...more than a minor contributor as a fuel source, as anyone can see by comparing the contents of their toilet bowl with the size of their gas tanks.

I've personally been reading papers on the subject for decades; it's really not mysterious or new.

The real advantage of processing sludge this way is to oxidize the problematic constituents of sewage, personal care product, pharmaceutical, surfactants and other species, and of course, pathogenic organisms and viruses. In a reforming environment, small amounts of any waste constituent will be converted to asphaltenes, which of course, are used to do things like pave roads, etc.

This is effective sequestration from the atmosphere. It's not a bad idea at all; but it's of minor importance.

Latest Discussions»Issue Forums»Environment & Energy»Fuel from sewage is the f...