Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

Bill USA

(6,436 posts)
Wed May 13, 2015, 07:10 PM May 2015

Human-level control through deep reinforcement learning - machine learning

Last edited Wed May 13, 2015, 07:52 PM - Edit history (1)

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

The theory of reinforcement learning provides a normative account1, deeply rooted in psychological2 and neuroscientific3 perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems4, 5, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms3. While reinforcement learning agents have achieved some successes in a variety of domains6, 7, 8, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks9, 10, 11 to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games12. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.


http://googleresearch.blogspot.com/2015/02/from-pixels-to-actions-human-level.html
(emphasis my own)


Remember the classic videogame Breakout on the Atari 2600? When you first sat down to try it, you probably learned to play well pretty quickly, because you already knew how to bounce a ball off a wall in real life. You may have even worked up a strategy to maximise your overall score at the expense of more immediate rewards. But what if you didn't possess that real-world knowledge — and only had the pixels on the screen, the control paddle in your hand, and the score to go on? How would you, or equally any intelligent agent faced with this situation, learn this task totally from scratch?

This is exactly the question that we set out to answer in our paper “Human-level control through deep reinforcement learning”, published in Nature this week. We demonstrate that a novel algorithm called a deep Q-network (DQN) is up to this challenge, excelling not only at Breakout but also a wide variety of classic videogames: everything from side-scrolling shooters (River Raid) to boxing (Boxing) and 3D car racing (Enduro). Strikingly, DQN was able to work straight “out of the box” across all these games – using the same network architecture and tuning parameters throughout and provided only with the raw screen pixels, set of available actions and game score as input.

The results: DQN outperformed previous machine learning methods in 43 of the 49 games. In fact, in more than half the games, it performed at more than 75% of the level of a professional human player. In certain games, DQN even came up with surprisingly far-sighted strategies that allowed it to achieve the maximum attainable score—for example, in Breakout, it learned to first dig a tunnel at one end of the brick wall so the ball could bounce around the back and knock out bricks from behind.


(video at link)
Video courtesy of Atari Inc. and Mnih et al. “Human-level control through deep reinforcement learning”, Nature 26 Feb. 2015.

So how does it work? DQN incorporated several key features that for the first time enabled the power of Deep Neural Networks (DNN) to be combined in a scalable fashion with Reinforcement Learning (RL)—a machine learning framework that prescribes how agents should act in an environment in order to maximize future cumulative reward (e.g., a game score). Foremost among these was a neurobiologically inspired mechanism, termed “experience replay,” whereby during the learning phase DQN was trained on samples drawn from a pool of stored episodes—a process physically realized in a brain structure called the hippocampus through the ultra-fast reactivation of recent experiences during rest periods (e.g., sleep). Indeed, the incorporation of experience replay was critical to the success of DQN: disabling this function caused a severe deterioration in performance.


Comparison of the DQN agent with the best reinforcement learning methods in the literature. The performance of DQN is normalized with respect to a professional human games tester (100% level) and random play (0% level). Note that the normalized performance of DQN, expressed as a percentage, is calculated as: 100 X (DQN score - random play score)/(human score - random play score). Error bars indicate s.d. across the 30 evaluation episodes, starting with different initial conditions. Figure courtesy of Mnih et al. “Human-level control through deep reinforcement learning”, Nature 26 Feb. 2015.
(more)


for source code: https://sites.google.com/a/deepmind.com/dqn/

comments: https://news.ycombinator.com/item?id=9109157
Latest Discussions»Culture Forums»Science»Human-level control throu...