Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

Judi Lynn

(160,450 posts)
Fri Mar 2, 2018, 12:55 AM Mar 2018

Sounding rocket mission will trace auroral winds


(1 March 2018 - NASA Goddard) From the ground, the dance of the northern lights, or aurora borealis, can look peaceful. But those shimmering sheets of colored lights are the product of violent collisions between Earth’s atmosphere and particles from the Sun.

The beautiful lights are just the visible product of these collisions — the kinetic and thermal energy released, invisible to the naked eye, are no less important. Understanding the contribution that aurora make to the total amount of energy that enters and leaves Earth’s geospace system — referred to as auroral forcing — is one of the major goals of the NASA-funded Auroral Zone Upwelling Rocket Experiment, or AZURE. The more we learn about auroras, the more we understand about the fundamental processes that drive near-Earth space — a region that is increasingly part of the human domain, home not only to astronauts but also communications and GPS signals that can affect those of us on the ground on a daily basis.

AZURE is the first of eight sounding rocket missions launching over the next two years as part of an international collaboration of scientists known as The Grand Challenge Initiative – Cusp. These missions will launch from the Andøya and Svalbard rocket ranges in Norway to study the processes occurring inside the Earth’s polar cusp — where the planet’s magnetic field lines bend down into the atmosphere and allow particles from space to intermingle with those of Earthly origin — and nearby auroral oval, which AZURE will focus on.

AZURE will study the flow of particles in the ionosphere, the electrically charged layer of the atmosphere that acts as Earth’s interface to space, focusing specifically on the E and F regions. The E region — so-named by early radio pioneers that discovered the region was electrically charged, and so could reflect radio waves — lies between 56 to 93 miles above Earth’s surface. The F region resides just above it, between 93 to 310 miles altitude.

More:
http://www.spacenewsfeed.com/index.php/news/881-sounding-rocket-mission-will-trace-auroral-winds
Latest Discussions»Culture Forums»Science»Sounding rocket mission w...