Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

Judi Lynn

(160,516 posts)
Sat Aug 21, 2021, 08:41 AM Aug 2021

Here comes the Sun: Planetary scientists find evidence of solar-driven change on the Moon

20-AUG-2021

PhD student discovered that solar radiation could be a more important source of lunar iron nanoparticles than previously thought

Peer-Reviewed Publication
NORTHERN ARIZONA UNIVERSITY

Tiny iron nanoparticles unlike any found naturally on Earth are nearly everywhere on the Moon—and scientists are trying to understand why. A new study led by Northern Arizona University doctoral candidate Christian J. Tai Udovicic, in collaboration with associate professor Christopher Edwards, both of NAU’s Department of Astronomy and Planetary Science, uncovered important clues to help understand the surprisingly active lunar surface. In an article recently published in Geophysical Research Letters, the scientists found that solar radiation could be a more important source of lunar iron nanoparticles than previously thought.

Asteroid impacts and solar radiation affect the Moon in unique ways because it lacks the protective magnetic field and atmosphere that protect us here on Earth. Both asteroids and solar radiation break down lunar rocks and soil, forming iron nanoparticles (some smaller, some larger) that are detectable from instruments on satellites orbiting the Moon. The study used data from National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) spacecraft to understand how quickly iron nanoparticles form on the Moon over time.

“We have thought for a long time that the solar wind has a small effect on lunar surface evolution, when in fact it may be the most important process producing iron nanoparticles,” Tai Udovicic said. “Since iron absorbs a lot of light, very small amounts of these particles can be detected from very far away - making them a great indicator of change on the Moon”.

Surprisingly, the smaller iron nanoparticles seemed to form at a similar rate as radiation damage in samples returned from the Apollo missions to the Moon, a hint that the Sun has a strong influence in their formation.

More:
https://www.eurekalert.org/news-releases/926074

Latest Discussions»Culture Forums»Science»Here comes the Sun: Plane...