Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

tabatha

(18,795 posts)
Mon Jan 9, 2012, 04:26 PM Jan 2012

UCSB scientists say topography played key role in Deepwater Horizon disaster

(Santa Barbara, Calif.) — When UC Santa Barbara geochemist David Valentine and colleagues published a study in early 2011 documenting how bacteria blooms had consumed almost all of the deepwater methane plumes following the Deepwater Horizon oil spill in 2010, some people were skeptical. How, they asked, could almost all of the lethal gas emitted from the Deepwater Horizon well just disappear?

In a new study published in the Proceedings of the National Academy of Sciences (PNAS), Valentine, Igor Mezic, a professor of mechanical engineering at UCSB, and their co-authors explain how they used an innovative computer model to demonstrate the roles of underwater topography, currents, and bacteria of the Gulf of Mexico in the disappearance of methane and other chemicals that spewed from the well for nearly three months after it erupted about 40 miles off the Louisiana coast on April 20, 2010.

The new study, according to Valentine, is a logical extension of his 2011 study, in which he and his research partners explained the role of bacteria in consuming more than 200,000 metric tons of dissolved methane. That study, published in the journal Science, was recently chosen as number 39 in Discover magazine's Top 100 stories of 2011.

"It seemed to me we were putting together a lot of pieces," Valentine said. "We would go out, take some samples, and we would study what was happening in those samples, both during and after the spill. There was a transition of the microorganisms and a transition of the biodegradation, and it was very clear that we needed to somehow incorporate the movement of the water. I knew there was going to be an important component of the physics of the water motion, where the water went. I realized that linkage might provide that third leg to the stool for this thing to sit right."

http://www.eurekalert.org/pub_releases/2012-01/uoc--uss010512.php

Latest Discussions»Issue Forums»Environment & Energy»UCSB scientists say topog...