Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

OKIsItJustMe

(19,938 posts)
Thu Oct 8, 2015, 08:50 PM Oct 2015

New method facilitates research on fuel cell catalysts

https://www.tum.de/en/about-tum/news/press-releases/short/article/32646
[font face=Serif][font size=4]New method facilitates research on fuel cell catalysts[/font]
[font size=5]Faster design – better catalysts[/font]
08.10.2015, Research news
[font size=4]While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Catalyst design plays a key role in improving these processes. An international team of scientists has now developed a concept that elegantly correlates geometric and adsorption properties. They validated their approach by designing a new platinum-based catalyst for fuel cell applications.[/font]

[font size=3]…

In order to validate the accuracy of their new methodology, the researchers computationally designed a new type of platinum catalyst for fuel cell applications. The model catalysts were prepared experimentally using three different synthesis methods. In all three cases, the catalysts showed up to three and a half times greater catalytic activity.

“This work opens up an entirely new way for catalyst development: the design of materials based on geometric rationales which are more insightful than their energetic equivalents,” says Federico Calle-Vallejo. “Another advantage of the method is that it is based clearly on one of the basic principles of chemistry: coordination numbers. This significantly facilitates the experimental implementation of computational designs.”

“With this knowledge, we might be able to develop nanoparticles that contain significantly less platinum or even include other catalytically active metals,” says Professor Aliaksandr S. Bandarenka, tenure track professor at Technical University of Munich. “And in future we might be able to extend our method to other catalysts and processes, as well.”

…[/font][/font]
Latest Discussions»Issue Forums»Environment & Energy»New method facilitates re...