Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

BridgeTheGap

(3,615 posts)
Tue Mar 19, 2013, 09:05 AM Mar 2013

The Power of Swarms Can Help Us Fight Cancer, Understand the Brain, and Predict the Future

The first thing to hit Iain Couzin when he walked into the Oxford lab where he kept his locusts was the smell, like a stale barn full of old hay. The second, third, and fourth things to hit him were locusts. The insects frequently escaped their cages and careened into the faces of scientists and lab techs. The room was hot and humid, and the constant commotion of 20,000 bugs produced a miasma of aerosolized insect exoskeleton. Many of the staff had to wear respirators to avoid developing severe allergies. “It wasn’t the easiest place to do science,” Couzin says.

In the mid-2000s that lab was, however, one of the only places on earth to do the kind of science Couzin wanted. He didn’t care about locusts, per se—Couzin studies collective behavior. That’s swarms, flocks, schools, colonies … anywhere the actions of individuals turn into the behaviors of a group. Biologists had already teased apart the anatomy of locusts in detail, describing their transition from wingless green loners at birth to flying black-and-yellow adults. But you could dissect one after another and still never figure out why they blacken the sky in mile-wide plagues. Few people had looked at how locusts swarm since the 1960s—it was, frankly, too hard. So no one knew how a small, chaotic group of stupid insects turned into a cloud of millions, united in one purpose.

Couzin would put groups of up to 120 juveniles into a sombrero-shaped arena he called the locust accelerator, letting them walk in circles around the rim for eight hours a day while an overhead camera filmed their movements and software mapped their positions and orientations. He eventually saw what he was looking for: At a certain density, the bugs would shift to cohesive, aligned clusters. And at a second critical point, the clusters would become a single marching army. Haphazard milling became rank-and-file—a prelude to their transformation into black-and-yellow adults.

That’s what happens in nature, but no one had ever induced these shifts in the lab—at least not in animals. In 1995 a Hungarian physicist named Tamás Vicsek and his colleagues devised a model to explain group behavior with a simple—almost rudimentary—condition: Every individual moving at a constant velocity matches its direction to that of its neighbors within a certain radius. As this hypothetical collective becomes bigger, it flips from a disordered throng to an organized swarm, just like Couzin’s locusts. It’s a phase transition, like water turning to ice. The individuals have no plan. They obey no instructions. But with the right if-then rules, order emerges.

http://www.wired.com/wiredscience/2013/03/powers-of-swarms/

Latest Discussions»Culture Forums»Science»The Power of Swarms Can H...